证明:若n为自然数,则(21n+4,14n+3)=1。
(1)证明:不妨设( 21n+4,14n+3 )=d,则
d|21n+4,d|14n+3,也有 d|2 (21n+4),d|3 (14n+3), 则 d|3 14n+9-21n x 2-8
即 d|1,则 d=1,即(21n+4,14n+3)=1.
暂无解析
[1260,882,1134]=()。
素数写成两个平方数和的方法是()
若S(m),S(n)表示m,n的所有正约数之和,(m,n)=1时下列各式正确的是()。
若p为质数,则p的k次方的所有正约数之和为()
若2|4a-6b+c,则以下一定成立的是()。