证明:方程x2-y2=2002无整数解。

查看答案
正确答案:

证明:假设存在整数x,y 使得x2-y2=2002,则(x-y )(x+y)=2002=2 x 7 x 143;

由右边等式可知x-y和x+y 必为一奇一偶;

不妨设x+y为奇数,则x,y中必有一奇一偶,而x-y不等于偶数,则矛盾。

若x-y=偶数,则x,y必有双奇双偶;而x+y不等于奇数,则与条件矛盾。

由上述可知,不存在整数x,y 使x2-y2=2002

答案解析:

暂无解析

上一题
你可能感兴趣的试题

[1260,882,1134]=()。

在整数中正素数的个数()

A、有1个
B、有限多
C、无限多
D、不一定

解同余式12x+15≡0(mod45)

已知(a,b,c)=1,则一定有()

A、(a,b)=1
B、(b,c)=1
C、(a,c)=1
D、((a,b),c)=1

求[136,221,391]=?

热门试题 更多>
相关题库更多>
组织行为学
中国近现代史纲要
政治经济学(财)
英语(一)
英语(二)
物理(工)
思想道德修养与法律基础
数论初步
数量方法(二)
人力资源管理(一)
毛泽东思想和中国特色社会主义理论体系概论
马克思主义
经济法概论
计算机应用技术
计算机应用基础
计算机网络技术
工程数学-线性代数
高等数学基础
高等数学二
高等数学(一)
高等数学(工专)
高等数学(工本)
概率论与数理统计(二)
大学语文
试卷库
试题库