旋转变换在平面几何中有着广泛的应用.特别是在解(证)有关等腰三角形、正三角形、正方形等问题时,更是经常用到的思维方法,请你用旋转交换等知识,解决下面的问题.
如图1,△ABC与△DCE均为等腰直角三角形,DC与AB交于点M,CE与AB交于点N.
(1)以点C为中心,将△ACM逆时针旋转90°,画出旋转后的△A′CM′
(2)在(1)的基础上,证明AM2+BN2=MN2.
(3)如图2,在四边形ABCD中,∠BAD=45°,∠BCD=90°,AC平分∠BCD,若BC=4,CD=3,则对角线AC的长度为多少?(直接写出结果即可,但在图中保留解决问题的过程中所作辅助线、标记的有关计算数据等)
阅读下列材料:小明为了计算2+2+22+....+22017+22018的值,采用以下方法:
设S=1+2+2+2+2①
则2S=1+2+22+....22018+22019②
②-①得2S-S=S=22019-1
∴S=1+2+22+....22017+22018=22019-1
请仿照小明的方法解决以下问题:
(1)1+2+...+29=______;
(2)3+32+3...+310=————;
(3)求1+a+a2+...+an的和(a>0,n是正整数,请写出计算过程)
(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.
①线段DB和DG之间的数量关系是DB=DG;
②写出线段BE,BF和DB之间的数量关系。
(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G.
①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;
②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.
某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛
收集数据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩分数如下(单位:分):
908568928184959387897899898597
888195869895938986848779858982
(1)将图中空缺的部分补充完整
(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学,根据下面统计结果估计该校初一年级360人中有多少人将获得表彰;
(3)“创文知识竞赛”中收到表彰的小红同学得到印有龚扇,剪纸,彩灯,恐龙图案的四枚纪念奖章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念奖章中,恰好有恐龙图案的概率是_____?