旋转变换在平面几何中有着广泛的应用.特别是在解(证)有关等腰三角形、正三角形、正方形等问题时, 更是经常用到的思维方法,请你用旋转交换等知识,解决下面的问题.
如图 1,△ABC与△DCE均为等腰直角三角形,DC与 AB交于点 M,CE与 AB交于点 N.
(1)以点 C为中心,将△ ACM逆时针旋转 90°,画出旋转后的△A′CM′
(2)在( 1)的基础上,证明AM2+BN2=MN2.
(3)如图 2,在四边形 ABCD中,∠ BAD=45°,∠ BCD=90°, AC平分∠ BCD,若 BC=4,CD=3,则对角线 AC的长度为多少? (直接写出结果即可,但在图中保留解决问题的过程中所作辅助线、标记的有关计算数据等)
某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民的大病住院医疗费用的报销比例标准如下表:
设享受医保的某居民一年的大病住院医疗费用为x元,按上述标准报销的金额为y元.
(1)直接写出 x≤50000时, y关于x的函数关系式,并注明自变量x的取值范围;
(2)若某居民大病住院医疗费用按标准报销了20000元,问他住院医疗费用是多少元?
如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t_________秒(0秒时,S1=2S2.
某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民的大病住院医疗费用的报销比例标准如下表:
设享受医保的某居民一年的大病住院医疗费用为x元,按上述标准报销的金额为y元.
(1)直接写出x≤50000时,y关于x的函数关系式,并注明自变量x的取值范围;
(2)若某居民大病住院医疗费用按标准报销了20000元,问他住院医疗费用是多少元?