设f(x,y)具有一阶偏导数,且对任意的(x,y),
甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为t0(单位:s),则()
设 f(0)=0 ,则 f(x) 在 x =0 处可导の充要条件为()
设A,B=,则A与B=()
设随机变量 ( X, Y) 服从二维正态分布,且 X与Y不相关, f ( x) f ( y) X Y 分别表示 X,Y的概率密度, 则在Y=y的条件下, X的条件概率密度f X|Y (X|Y) 为()
则下列结论正确的是()