当前位置:考试网  > 试卷库  > 学历类  > 成考  >  设函数f(x)=x'-3x2-9x,求 (I)函数f(x)的导数 (II)函数f(x)在区间[,4]的最大值与最小值.
试题预览

设函数f(x)=x'-3x2-9x,求

(I)函数f(x)的导数

(II)函数f(x)在区间[,4]的最大值与最小值.

查看答案
收藏
纠错
正确答案:

解: (I )

因为函数f(x)=x3-3x2-9x,所以

f(x)=3x2-6x-9,人

解:(II)

令f (x)=0,解得x=3或x=-1,比较f(1),f(3), f(4)的大小,

f(1)=-11 f(3)=-27 f(4)=-20

所以函数f(x)=x3-3x2- 9x 在区间[1,4]的最大值为-11,最小值为-27。

答案解析:

暂无解析

你可能感兴趣的试题

在实验中进行下列实验,括号内的实验用品都能用到的是()

关于气温水平分布的叙述准确的是()

以下四个地点中,符合“东半球”、“北半球”、“温带”、“西风带”四个条件的是()

若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg和0.78kg,则其余2条的平均质量为_____kg.

中共十一届三中全会后,农村实行家庭联产承包责任制,农民从中获得了

扫一扫,手机做题