当前位置:考试网  > 试卷库  > 学历类  > 成考  >  设函数f(x)=x'-3x2-9x,求 (I)函数f(x)的导数 (II)函数f(x)在区间[,4]的最大值与最小值.
试题预览

设函数f(x)=x'-3x2-9x,求

(I)函数f(x)的导数

(II)函数f(x)在区间[,4]的最大值与最小值.

查看答案
收藏
纠错
正确答案:

解: (I )

因为函数f(x)=x3-3x2-9x,所以

f(x)=3x2-6x-9,人

解:(II)

令f (x)=0,解得x=3或x=-1,比较f(1),f(3), f(4)的大小,

f(1)=-11 f(3)=-27 f(4)=-20

所以函数f(x)=x3-3x2- 9x 在区间[1,4]的最大值为-11,最小值为-27。

答案解析:

暂无解析

你可能感兴趣的试题

若lg5=m,则lg2=()

简述第二次世界大战爆发、扩大、转折和结束的重大事件。

水稻分蘖期间,农民拔草、治虫;排水晒田。稻谷收获之后,有的农民焚烧稻秆。下列叙述错误的是()

X、Y、Z、M、N五种常见的短周期元素原子半径随原子序数变化如下图。已知X的一种原子的质量数为18,中子数为10;Y和Ne原子的核外电子数相差1;M的单质是一种常见的半导体材料:N的原子半径在同周期主族元素中最小;Y、Z、N三种元素的最高氧化物对应的水化物两两之间可以发生反应。下列说错误的是()

一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有()

热门试题 更多>
试题分类: 高等数学二
练习次数:0次
试题分类: 工程力学(二)
练习次数:2次
扫一扫,手机做题