旋转变换在平面几何中有着广泛的应用.特别是在解(证)有关等腰三角形、正三角形、正方形等问题时, 更是经常用到的思维方法,请你用旋转交换等知识,解决下面的问题.
如图 1,△ABC与△DCE均为等腰直角三角形,DC与 AB交于点 M,CE与 AB交于点 N.
(1)以点 C为中心,将△ ACM逆时针旋转 90°,画出旋转后的△A′CM′
(2)在( 1)的基础上,证明AM2+BN2=MN2.
(3)如图 2,在四边形 ABCD中,∠ BAD=45°,∠ BCD=90°, AC平分∠ BCD,若 BC=4,CD=3,则对角线 AC的长度为多少? (直接写出结果即可,但在图中保留解决问题的过程中所作辅助线、标记的有关计算数据等)
暂无解析
阅读下列材料:小明为了计算2+2+22+....+22017+22018的值,采用以下方法:
设S=1+2+2+2+2①
则2S=1+2+22+....22018+22019②
②-①得2S-S=S=22019-1
∴S=1+2+22+....22017+22018=22019-1
请仿照小明的方法解决以下问题:
(1)1+2+...+29=______;
(2)3+32+3...+310=————;
(3)求1+a+a2+...+an的和(a>0,n是正整数,请写出计算过程)
(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.
①线段DB和DG之间的数量关系是DB=DG;
②写出线段BE,BF和DB之间的数量关系。
(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G.
①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;
②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.
若一元二次方程x^2+4x+c=0有两个不相等的实数根,则c的值可以是(写出一个即可).
如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=m/2(m≠0)的图象相交于第一、三象限内的A(3,5),B(a,-3)两点,与x轴交于点C.
(1)求该反比例函数和一次函数的解析式;
(2)在y轴上找一点P使PB-PC最大,求PB-PC的最大值及点P的坐标;
(3)直接写出当y1>y2时,x的取值范围
如图,已知A、B两点的坐标分别为(8,0),(0,8)点C、F分别是直线x5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD的值是()