如图,已知 A、 B 两点的坐标分别为( 8,0),(0,8)点 C、F 分别是直线 x 5 和 x 轴上的动点, CF=10,点 D 是线段 CF 的中点,连接 AD 交 y 轴于点 E,当 △ABE 面积取最小值时, tan∠BAD 的值是()
B
暂无解析
如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(-1,0)和点B(2,3)两点.
(1)求抛物线C函数表达式;
(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;
(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y=17/4的距离,若存在,求出定点F的坐标;若不存在,请说明理由.
某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为_____.
如果,在△ABC中,AD是高,AE是∠BAC的平分线,∠BAC=54°,∠C=70°.求∠EAD的度数.
下列长度的各种线段,可以组成三角形的是()
城区学校组织“书香谜缘”灯谜竞猜比赛.某校拟从3名男生(以A1、A2、A3表示)和2名女生(以B1、B2表示)中选取3人组队参赛.
(1)若从5位备选学生中随机选取1人担任队长,则选取到男生的概率是;
(2)若已知男生A1选取为队长,在其余4人中选取2人作为队员,请你用画树状图或列表的方法表示所有等可能的结果,并求出选取的两队员恰好是1男1女的概率.