当前位置:考试网  > 试卷库  > 学历类  > 自考  > 自考公共课  > 数论初步  > 证明形如4n-1的整数不能写成两个平方数的和
试题预览

证明形如4n-1的整数不能写成两个平方数的和

查看答案
收藏
纠错
正确答案:

证明 设 n是正数 , 并且 n≡-1(mod 4)

如果n=x²+ y ²

则因为对于模 4, x, y 只与 0,1,2,-1 等同余

所以x ², y² 只能与 0,1 同余

所以x²+y²≡0,1,2(mod 4)

而这与 n≡-1(mod 4) 的假设不符

即定理的结论成立

答案解析:

暂无解析

你可能感兴趣的试题

有利于学生学习的临床教师态度是()。

国务院组成机构是国务院机构的主体,具体包括国务院办公厅和国务院直属机构

行政处罚适用于有违法失职行为的国家公务员

建立社会保障制度是建立社会主义市场经济的要求

属于现场控制的重点工作是()

热门试题 更多>
试题分类: 高考
练习次数:0次
扫一扫,手机做题