如图,已知A、B两点的坐标分别为(8,0),(0,8)点C、F分别是直线x5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD的值是()
A、8/17已知角A70°,则A的补角为()
一次函数 y=ax+b 与反比例函数 x c y 的图象如图所示, 则二次函数 y=ax 2+bx+c 的大致图 象是()
均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的()
分解因式:x^2﹣y^2﹣3x﹣3y=__________.
如图,已知直线 AB 与抛物线 C : y=ax2+2x+c 相交于点 A(-1,0)和点 B(2,3)两点.
(1)求抛物线 C 函数表达式;
(2)若点 M 是位于直线 AB 上方抛物线上的一动点, 以 MA、MB 为相邻的两边作平行四边形 MANB ,当平行四边形 MANB 的面积最大时,求此时平行四边形 MANB 的面积 S 及点 M的坐标;
(3)在抛物线 C 的对称轴上是否存在定点 F,使抛物线 C 上任意一点 P 到点 F 的距离等于到直线 y=17/4 的距离,若存在,求出定点 F 的坐标;若不存在,请说明理由 .