已知,二次型的秩为2,(I)求实数a的值;(II)求正交变换x=Qy将f化为标准形.
求函数f(x,y)=x^2+y^2在条件2x+3y=1下的极值.
证明方程xxx1nn-1+n1的整数,在区间1,12内有且仅有一个实根;(II)记(I)中的实根为xn,证明limnnx存在,并求此极限
已知函数11sinxfxxx,记0limxafx,(I)求a的值 (II)若x0时,fxa与kx是同阶无穷小,求常数k的值.
已知函数f(x)满足方程f(x)f(x)2f(x)0及()()2xfxfxe,(I)求f(x)的表达式 (II)求曲线220()()dxyfxftt的拐点.